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Introduction. Medial temporal lobe atrophy assessment via magnetic resonance imaging (MRI) has been proposed in recent criteria
as an in vivo diagnostic biomarker of Alzheimer’s disease (AD). However, practical application of these criteria in a clinical setting
will require automatedMRI analysis techniques. To this end, we wished to validate our automated, high-dimensionalmorphometry
technique to the hypothetical prediction of future clinical status from baseline data in a cohort of subjects in a large, multicentric
setting, compared to currently known clinical status for these subjects. Materials and Methods. The study group consisted of 214
controls, 371 mild cognitive impairment (147 having progressed to probable AD and 224 stable), and 181 probable AD from the
Alzheimer’s Disease Neuroimaging Initiative, with data acquired on 58 different 1.5 T scanners. We measured the sensitivity and
specificity of our technique in a hierarchical fashion, first testing the effect of intensity standardization, then between different
volumes of interest, and finally its generalizability for a large, multicentric cohort. Results. We obtained 73.2% prediction accuracy
with 79.5% sensitivity for the prediction of MCI progression to clinically probable AD. The positive predictive value was 81.6% for
MCI progressing on average within 1.5 (0.3 s.d.) year.Conclusion.With high accuracy, the technique’s ability to identify discriminant
medial temporal lobe atrophy has been demonstrated in a large, multicentric environment. It is suitable as an aid for clinical
diagnostic of AD.

1. Introduction

1.1. Medial Temporal Lobe Atrophy as a Structural Biomarker
of Alzheimer’s Disease Progression. Early identification of
patients most at risk of progression to dementia due to
Alzheimer’s disease (AD) remains a crucial clinical and
research issue. To address this concern new criteria have
been proposed to increase diagnostic certainty and better
identify individuals in a prodromal state, mild cognitive
impairment (MCI) due to AD [1–3]. In vivo biomarkers of
disease progression, both chemical and imaging, lie at the
heart of these criteria.

The earliest AD-associated brain alterations, according
to histopathological staging [4], occur in medial temporal
lobe structures, in particular the hippocampus and entorhinal
cortices; they have been reported in amnestic MCI subjects
[5, 6].The AD neurodegenerative cascade results in dendritic

pruning, loss of synapses, and eventually neuronal death,
resulting in cerebral atrophy of which structural magnetic
resonance imaging (MRI) is able to measure. Thus, medial
temporal atrophy (MTA) has been reported extensively on
the continuum from MCI to AD [7, 8] and is a recognized
imaging biomarker in the new criteria [1–3].

The most validated procedure to estimate MTA relies
on expert manual outlining (i.e., segmentation) of indi-
vidual or ensembles of structures on high resolution T1-
weighted MRI, following an established set of anatomical
landmarks [9]. While manual segmentation is accepted as
the best available technique, it cannot be widely used within
a large-scale clinical setting, as the investment in expertise
and resources is prohibitively great. This type of applica-
tion thus necessitates semiautomated or ideally completely
automated image processing techniques, as a cost-efficient
strategy.
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1.2. Automated Techniques for MTA Assessment. There has
been renewed enthusiasm recently over the performance
of multi-atlas or template-based approaches for automated
segmentation [10–16]. Over the last decadehowever a number
of high-dimensional morphometry techniques have arisen
that attempt to characterize potentially multimodal image
information from a volume of interest larger than a single
structure, generally encompassing the medial temporal lobe,
and embedding machine learning principles to both char-
acterize and discriminate subject populations [17]. There is
increasing evidence that this approach will allow for more
accurate determination of AD time course in a number of
reports [18–27]. Other notable works include Davatzikos and
colleagues with a diffeomorphing-based algorithm to extract
high-dimensional patterns [28]; and Hua et al., who used
tensor-based morphometry for similar purposes [29].

Our methodology is set within this context. It incorpo-
rates local estimates of both tissue composition and defor-
mation within a specific volume of interest (VOI) centered
on the medial temporal lobes [30], providing a structural
index related to disease progression [31]. Such changes
in tissue composition have been reported via voxel-based
morphometry [32] and contrast studies [33], while volumetry
[34] and tensor-based morphometry [29, 35] reports have
shownpathology-related deformations in specific brain areas.
By incorporating both image features, we are able to capture
different properties of the advancing pathological process
and predict future clinical status for an individual subject.
We have applied this methodology in earlier work to the
discrimination of probable AD from age-matched healthy
controls [30] as well as the prediction of amnestic MCI
progression to clinically probable AD [36], albeit within a
single-center setting.

1.3. Bridging the Gap towards Clinical Use. Clinical applica-
tion of any one of these automated methodologies require
that techniques maintain the same level of performance in
a multicentric setting, where large interscanner variations
become inevitable due to MRI physics [37], even though
systematic errors (such as different acquisition protocols) are
controlled. These random effects will distort image inten-
sities, which in turn will influence image processing and,
eventually, classification performance. Not all techniques
proposed in the literature have been subjected to this kind
of sensitivity analysis.

An ideal dataset for this purpose is the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study [38]. For the
first phase of ADNI, a total of 822 subjects (229 normal
controls (CTRL), 405 individuals with MCI, and 188 subjects
with mild AD) were recruited in 58 sites throughout the
United States and Canada for longitudinal followup. ADNI
was successful in coordinating and implementing a routine
imaging protocol at all sites with stringent quality control [39,
40], thereby ensuring that all scans were similarly acquired,
reducing systematic errors. Cuingnet et al. conducted a
comparative study of ten machine learning techniques using
ADNI data [18] in which many parameters were controlled.
Such reports are useful for benchmarking and serve to
improve system’s performance and robustness.

1.4. Study Objectives. Our general objective is to assess the
accuracy of our automated high-dimensional morphometry
technique to the hypothetical prediction of future clinical
status fromMRIwhen examining previously acquired data in
a cohort of MCI subjects from the large, multicentric ADNI
dataset, compared to the currently known clinical status for
these subjects, under various conditions.

Specifically, we will want to test the following hypotheses,
which would need to hold true for any methodology:

(a) that intensity standardization and tissue classification
improve the system’s robustness and hence perfor-
mance, in a multicentric setting;

(b) that a medial temporal lobe VOI is the best for the
differentiation of CTRL from either probable AD
or MCI progressing to probable AD, as opposed to
whole-brain VOIs [43];

(c) that the methodology remains highly accurate even
with large, ostensibly heterogeneous datasets.

Proving or disproving these hypotheses would constitute
significant contributions that could be further employed in
other, similar research endeavors.

2. Methods

2.1. Ethics. Each participant from the ADNI cohort was
formally evaluated using eligibility criteria that are described
in detail elsewhere (http://www.adni-info.org/). The institu-
tional review boards of all participating institutions approved
the procedures for this study. Written informed consent was
obtained from all participants or surrogates. More informa-
tion about the ADNI investigators is given in Acknowledg-
ment.

2.2. StudyDesign. This is a retrospective analysis of data from
a nonrandomized, natural history nontreatment study.

2.3. Subjects’ Data. Inclusion criteria to the ADNI (Data
used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://www.loni.usc.edu/ADNI/). The ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and nonprofit organi-
zations, as a $60 million, 5-year public-private partner-
ship. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biologicalmarkers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specificmarkers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessening the time
and cost of clinical trials. The principle investigator of this
initiative is Michael W. Weiner, M.D., VA Medical Center
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Total cohort (ADNI)
N = 822

Excluded patients
n = 62

Incomplete
n = 1

Conv., regression
n = 17

Failed quality control
n = 44

Study group
N = 760

Controls
n = 200

MCI nonprogressor
n = 222

MCI progressor
n = 159

Probable AD
n = 179

Controls
n = 154

MCI nonprogressor
n = 134

MCI progressor
n = 70

Probable AD
n = 130

Comparison group
N = 488

Figure 1: Cohort flow diagram.

and University of California, San Francisco. ADNI is the
result of efforts of many coinvestigators from a broad range of
academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research—approximately
200 cognitively normal older individuals to be followed for 3
years, 400 people withMCI to be followed for 3 years, and 200
people with early AD to be followed for 2 years. For up-to-
date information see http://www.adni-info.org/.) study were
as follows:

(a) CTRL: MMSE scores [44] between 24–30 (inclusive),
a CDR [45] of 0, non-depressed, non-MCI, and
nondemented. The age range of normal subjects
was roughly matched to that of MCI and mild AD
subjects;

(b) MCI subjects: MMSE scores between 24 and 30
(inclusive), a memory complaint, have objective
memory loss measured by education adjusted scores
on Wechsler Memory Scale Logical Memory II [46],
a CDR of 0.5, absence of significant levels of impair-
ment in other cognitive domains, essentially pre-
served activities of daily living, and an absence of
dementia;

(c) Mild AD: MMSE scores between 20 and 26 (inclu-
sive), CDR of 0.5 or 1.0, and meets NINCDS/ADRDA
criteria for probable AD [47].

From the complete ADNI dataset of 822 subjects at
baseline, we selected individuals for the Study Group that met
the following criteria (cf. Figure 1): (a) valid entry images;
(b) processed images that passed automated quality control;
(c) long-term clinical assessment; and (d) no conversion
(CTRL) or regression (Mild AD, MCI) in terms of final
diagnostic.

In fine, the Study Group was composed of 200 CTRL,
179 patients with Mild AD, and 381 MCI subjects (cf. Table 5
for a list of quality-control exclusions). Within the MCI
population, 159 MCI progressed to clinically probable or
possible AD (MCI-P) at an average followup of 1.5 years
(SD: 0.3 years; range 0.1–3.5 years), while 222 remained stable
(MCI-NP) within an average followup of 2.2 years (SD: 1.0
years; range 0.0–4.1 years).

In order to benchmark our technique with the literature,
we selected 488 subjects used in the Cuingnet study [18] and
formed the Comparison Group, in effect a subset of the larger
Study Group. The difference between ours and the Cuingnet
listing are quality control rejections from our study. By using
similar groups, we allow external validation of our results
with the literature.
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Table 1: Demographics.

Group CRTL (𝑛 = 200) AD (𝑛 = 179) MCI-NP (𝑛 = 222) MCI-P (𝑛 = 159) 𝑃

Age (years) 75.8 75.1 74.9 74.8 0.4807
Sex (%F) 48% 48% 34% 40% 0.0069
A one-way ANOVA is used to compare group ages and a chi-square test to compare sex.

Table 2: Discrimination of controls versus probable AD.

Data set Data type VOI Correct Rate Sn Sp Sn + Sp
Intensity standardisation testing

Study Original intensity + determinant MTL 0.741 0.705 0.776
Study STI intensity + determinant MTL 0.744 0.732 0.758
Study GM + determinant MTL 0.779 0.763 0.792

Volume of interest testing
Study GM + determinant MTL 0.779 0.763 0.792 1.652
Study GM + determinant Segmented 0.778 0.739 0.815
Study GM + determinant Brain 0.691 0.660 0.718

Large-scale testing
Study GM + determinant MTL 0.779 0.763 0.792
Comparison GM + determinant MTL 0.787 0.725 0.851
STI: intensity standardisation technique; GM: grey matter; VOI: volume of interest; MTL: medial temporal lobe volume; Sn: sensitivity; Sp: specificity.

Table 3: Discrimination controls versus MCI progressors.

Data set Data type VOI Correct rate Sn Sp Sn + Sp
Intensity standardisation testing

Study Original intensity + Determinant MTL 0.700 0.742 0.649
Study STI intensity + determinant MTL 0.721 0.780 0.623
Study GM + determinant MTL 0.722 0.792 0.634

Volume of interest testing
Study GM + determinant MTL 0.722 0.792 0.634
Study GM + determinant Segmented 0.708 0.730 0.681
Study GM + determinant Brain 0.683 0.785 0.550

Large-scale testing
Study GM + determinant MTL 0.722 0.792 0.634
Comparison GM + determinant MTL 0.594 0.824 0.478

Table 4: Discrimination of MCI progressors versus nonprogressors.

Data set Data type VOI Correct rate Sn Sp Sn + Sp
Intensity standardisation testing

Study Original intensity + determinant MTL 0.606 0.278 0.843
Study STI intensity + Determinant MTL 0.635 0.372 0.824
Study GM + determinant MTL 0.622 0.346 0.820

Volume of interest testing
Study GM + determinant MTL 0.622 0.346 0.820
Study GM + determinant Segmented 0.612 0.340 0.794
Study GM + determinant Brain 0.572 0.145 0.878

Large-scale testing
Study GM + determinant MTL 0.622 0.346 0.820
Comparison GM + determinant MTL 0.660 0.029 1.000 1.029
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Table 5: Quality control data for the ADNI cohort. Subjects
included in this table have been excluded for analysis on the basis
of (A) missing, badly formatted or wrong acquisition sequence of
input images; (B) poor contrast/signal-to-noise ratio; (C) failure of
automated processing for the pipeline described in this paper. Note
that other image processing pipelines may/may not succeed/fail for
identical subjects.

57 77 161 177
194 259 273 282
311 312 325 326
406 431 433 446
575 598 602 618
621 629 633 679
686 747 850 855
860 928 931 991
1073 1131 1188 1205
1261 1331 1339 1343
1391 1407 1412 1419

2.4. MRI Acquisitions. MRI data for all Study Group subjects
were acquired on 58 different 1.5T scanners (GE Medical
Systems; Siemens Healthcare; Philips Healthcare) using a 3D
T1-weighted MP-RAGE protocol or its equivalent [40].

2.5. MRI Preprocessing. We processed all raw MRI acqui-
sitions in an identical fashion: (a) DICOM to MINC
(http://www.bic.mni.mcgill.ca/) conversion; (b) raw scanner
intensity inhomogeneity correction [48]; (c) noise removal
based on a 3D optimized blockwise version of the nonlocal-
means filter [49]; (d) linear scaling of grey level intensities
to match the mean level of the reference image; (e) global
registration (12 degrees of freedom) to the reference image
space [50], maximizing the mutual information between
the two volumes [51]; (f) resampling to a 1mm3 isotropic
grid; (g) intensity standardization and tissue classification
(see Section 2.6) to the reference image intensity histogram;
(h) tissue classification into cerebrospinal fluid, grey matter
(GM), and white matter components; (i) nonlinear image
registration [52] to assess differences between any given
subject and the reference image; and (j) computation of the
determinant of the Jacobian of the dense deformation fields
mapping the subject’s volume to the reference image. The
determinant represents a biologicallymeaningful quantity; in
this case, an estimate of local brain tissue volume difference
between the individual and the reference volume. When
the difference is near zero, there is no local difference in
volume between subject and reference images. However, if
the determinant is positive, the volume is larger, whereas
when negative, the volume is smaller when compared to
the reference after the deformation. It would be possible to
integrate the resulting values to obtain volumetric estimates,
which it not our intent at this point.

The reference image was an unbiased standard magnetic
resonance imaging template brain volume for a young adult
population, created using data from the ICBM project [53].

We did not perform distortion correction, nor selected
images corrected for distortion from the ADNI distribution
website. We assessed—albeit visually—that our fully affine
linear registration, centered on themedial temporal lobe, was
sufficient to remove most of the effects.

2.6. Processing Variables

2.6.1. Intensity Standardization and Tissue Classification. The
problem of multicentric acquisitions is to ensure that similar
intensities will have analogous tissue meaning in the images
across scanners. In this study we tested three intensity
features: (i) T1-weighted intensities, scaled to match the
mean level of the reference image (cf. Section 2.5 (d)); (ii)
T1-weighted intensities after undergoing a standardization
process [54]; and (iii) grey matter (GM) probability maps,
obtained via a tissue classification algorithm performed on
the scaled intensity images [55].

The intensity standardization technique makes use of
available reference image tissue masks (background, grey
matter and white matter). After global linear registration
of the subject’s image to the reference, a piecewise linear
mapping function is computed based on the intensity cor-
respondences obtained for each tissue, thereby implicitly
binding histogrammatching to tissue correspondence (rather
than only matching histograms, as is the case in a number
of different techniques, e.g., [41]). The following steps are
performed for each tissue: (1) mask both subject and refer-
ence images; (2) compute and smooth the subject-reference
joint intensity histogram; (3) find joint tissue maxima; (4)
determine the intensity mapping function by interpolating
linearly between maximum tissue positions; and (5) apply
the mapping to the original linear-registered image (see
Figure 2).

The GM probability maps were obtained by feeding
intensity images to a neural network classifier [56], which
provided fuzzy probability maps for each tissue class, from
which we retained only the GM probability.

We visually inspected and compared all standardized
images and GM probability maps for quality control.

2.6.2. Volumes of Interest. Following the conclusions of
Pelaez-Coca et al. [43], we tested two additional VOIs in
addition to the cubic-shapedMTL volume from our previous
study [30]. The anatomical VOIencompassed all of the tem-
poral lobe aswell as the ventricles, as defined on segmentation
probability maps from the reference image [53]. The global
VOI encompassed the whole cerebrum, as defined via a mask
on the template reference image. All three volumes are shown
in Figure 3.

2.6.3. Study Groups. All of the previous tests were done using
the complete StudyGroup, in effect testing for generalizability.
Further, to benchmark our technique with the literature, we
used the Comparison Group, in effect the same subjects used
in the Cuingnet study [18] (bar quality control exceptions).
By using similar groups, we allow external validation of our
results with the literature.
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Figure 2: Intensity standardization example for an ADNI subject. From left to right: (a) reference image; (b) original image; (c) standardized
image using the Nyul et al. histogram-matching technique [41]; and (d) standardized image using our tissue derived, spatially constrained
intensity matching technique [42]. The color map was chosen to increase contrast.

(a) (b) (c)

Figure 3: Overview of (a) medial temporal lobe volume of interest; (b) whole brain mask; and (c) temporal lobe volume of interest.

2.7. Classification. The classification method we employed is
summarized below. It builds on the previous methodology
described elsewhere [30].

First, the Study Group was randomly split into Training
and Testing groups.

Next, we generated from theTraining Group a representa-
tive feature space by performing principal component analy-
sis of (i) image intensities within the VOI as a proxy of local
tissue composition and (ii) image determinants as a proxy of
local tissue differences.We then expressed theTraining Group
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data as coordinates in the new principal components space,
and we assessed normality of the univariate distributions of
coordinates along any principal component via Shapiro-Wilk
statistics and rejected nonnormal distributions.

We used support vector machines with a linear kernel to
select the discriminatory variables from the projected data
forming the best discriminating function in the Training
Group for the classification task at hand (e.g., CTRL versus
Probable AD; CTRL versus MCI-P; MCI-P versus MCI-
NP). To complete the analysis, we projected the Testing
Group in the same principal components space, and used the
discrimination function to obtain independent assessment of
the system’s accuracy. To ensure we did not have a particular
bias related to random group assignments in the Study Group,
we repeated the random assignment process ten times.

We performed modeling, statistical, and classification
analyses using MATLAB (The MathWorks, Natick, MA).

2.8. Reference Standard. The reference standard for classifi-
cation consisted of the latest, longitudinal clinical assessment
available through ADNI.

2.9. Experimental Design. We tested our three hypotheses in
a hierarchical fashion, namely, as follows.

(a) Testing first for robustness, using either the T1-
weighted intensities (Step 2.5(d)), standardized
T1-weighted intensities (Step 2.5(g)) or the GM
probability maps following intensity standardization
(Step 2.5(h)), in the Study Group and within the
cubic-shaped VOI.

(b) Testing next for spatial sensitivity, using either the
cubic-shaped, Anatomical or Global VOIs, in the
Study Group and with the best intensity feature
obtained in the previous step.

(c) Testing finally for comparison, using both the ADNI
Study Group and the Cuingnet Comparison Group,
in the best VOI and with the best intensity feature
obtained from previous steps.

2.10. Statistical Analysis. The final reported results are aver-
aged over all trials for accuracy, sensitivity, and specificity.
We further employed McNemar’s test using exact binomial
probability calculations to assess the significance of the
difference between the two correlated proportions of the
truth table (clinical assessment versus MRI assessment).

2.11. Role of the Funding Sources. The funders had no role in
study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

3. Results

3.1. Subjects. Thefirst phase of the ADNI studywas closed for
recruitment on October 23, 2008.

After removing subjects for which incomplete data
existed at follo-up or that failed anyone of the image process-
ing steps (see Table 5), there were 760 subjects in the Study

Group (see Figure 1) and 488 subjects in the Comparison
Group.

Demographic information (age, sex) for each diagnostic
subgroup are reported in Table 1.

3.2. Robustness Testing. We used principal components anal-
ysis to reduce the dimensionality of subjects’ data to generate
two linear variation models of image intensities and local
volume differences as proxies of tissue composition and
deformations. For both models, we retained features that
explained 68% of the variance of the input data.

The best results were obtained with the GM probability
maps (see Table 2). In terms of accuracy the discrimination
of CTRL from probable AD in the Study Group was 77.9%
(189/243), sensitivity 76.3% (90/118), and specificity 79.2%
(99/125). By using McNemar’s Test (chi-square statistics
with 1 ddl: 0.0741; 𝑃 value = 0.7855), the difference is not
significant. Results for the discrimination of CTRL from
MCI-P (Table 3) were 72.2% (205/284), sensitivity 79.2%
(126/159), and specificity 63.4% (79/125). Likewise, the MRI-
clinical test results are not statistically different (McNemar
test: chi-square statistics with ddl = 1 : 2.1392; 𝑃 value =
0.1436, the difference is not significant). Finally, results for the
discrimination ofMCI-P fromMCI-NP (Table 4) were 62.2%
(237/381), sensitivity 34.6% (55/159), and specificity 82.0%
(182/222). For the MRI-clinical test results are statistically
different (McNemar test, chi-square statistics with ddl =
1 : 28.444, 𝑃 value < 0.0001).

3.3. Spatial Sensitivity Testing. To test the influence of VOI,
we retrained the system using GM probability maps and
determinant information in each of the three VOIs. In each
case we retained features that explained 68% of the variance
of the input data.

The best results in terms of accuracy for discrimination
were obtained using the same cubic-shaped VOI as in
Section 3.2 and hence provided similar results for CTRL
versus AD, CTRL versus MCI-P, and MCI-P versus MCI-NP.

3.4. Generalizability Testing. All of the previous results were
obtained with the more inclusive Study Group and averaged
over 10-fold. For comparison and benchmarking purposes,
we used the best technique from previous test and applied
it to the Cuingnet Comparison Group, which was split only
once in the same Training/Testing sets as their original article.
Results show accuracy for discrimination of CTRL from
probable AD of 78.7% (107/136), sensitivity 72.5% (50/69),
and specificity 85.1% (57/67) (Table 2). These results are not
significant, that is, the McNemar statistical test rejects sthe
null hypothesis (chi-square statistics with ddl = 1 : 2.7931; 𝑃
value = 0.0947). Results for the discrimination of CTRL from
MCI-P were 59.4% (60/101), sensitivity 82.4% (28/34), and
specificity 47.8% (32/67) (Table 3). McNemar test is strongly
indicative of congruence (chi-square statistics with ddl =
1 : 20.5122; 𝑃 value < 0.0001). Finally, discrimination of MCI-
P fromMCI-NPwere 66.0% (64/97), sensitivity 2.94% (1/34),
and specificity 100% (63/63) (Table 4). McNemar test is also
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Figure 4: Significant structural differences within the medial temporal lobe related to the discrimination task between (a, b) CTRL versus
probable AD and (c, d) CTRL versus MCI-P. Left images represent grey matter concentration differences, while right images represent
deformation differences. For each map, we present the covarying voxels associated with the top three eigenvectors in each discriminating
function, color-coded with respect to their negative or positive distance from the center and normalized to the maximum absolute value in
the VOI.

strongly indicative of congruence (chi-square statistics with
ddl = 1 : 33.00; 𝑃 value < 0.0001).

4. Discussion

4.1. Clinical Applicability. We wished to assess the ability of
our T1-weighted MRI classification technique to the retro-
spective, cross-sectional prediction of future clinical status

in a cohort of subjects within the large, multi-centric ADNI
cohort, under various conditions.

Our technique achieved a high level of performance for
the discrimination of probable AD from CTRL, achieving
79% accuracy on a comparative, benchmarked cohort, and
78% in a nearly twice-larger dataset.These results are statisti-
cally comparable to the clinical diagnostic (as perMcNemar’s
test) and thus support the use ofmachine-learning techniques
such as ours as biomarkers of medial temporal lobe atrophy
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within expanded criteria for the diagnostic of probable AD,
such as proposed by McKhann et al. [2]. The technique also
reached a global accuracy of 62% for progression of MCI to
probable AD within 1.5 years on average after baseline, also
congruent with a clinical diagnostic. These results indicate
that specific spatially covarying intensity and local volume
difference patterns, representative of tissue composition and
deformation at that instant in time hold discriminatory
information related to future clinical status in MCI. As
for the discrimination of MCI-P from MCI-NP, further
improvements are required if MRI alone is to be used. It
remains that the most probable course of action is to pair up
MRI information with clinical/cognitive testing.

We explored in Figure 4 the spatial distribution of dis-
criminating information for GM or determinant differences
between CTRL versus AD (Figures 4(a) and 4(b)) and CTRL
versus MCI-P (Figures 4(c) and 4(d)). The results show an
expected distribution of atrophy around the hippocampal
and ventricular areas, which follow the expected atrophy
distribution demonstrated in prior neuropathological studies
(e.g., Braak stages I–VI) [57]. Thus, these results lead us
to conclude that the automated technique is able to track
discriminant medial temporal lobe atrophy characteristics
related to AD, and thus serve as an aid for said diagnostic
in a clinical setting. As well, this can be thought of as a
biomarker of interest for neurodegeneration in MCI due to
AD, as recommended by Albert et al. [3].

A number of previous reports have explored the topic
of MR-based classification and prediction [18, 19, 21, 22, 24–
26]. Fewer authors have explored multimodal (e.g. MRI and
FDG-PET [20, 27]; MRI and SPECT [23]) or multifactorial
(e.g., MRI and CSF [58, 59]). Some of the latter report higher
discriminatory abilities when usingmultimodal information.
However, further evidence is required for those studies, as on
the one hand cohort sizes remain small (especially for multi-
modal studies), and on the other, the acquisition process
becomes clinically expensive and demanding for the patients.

Our results are in line with this previous literature but are
best compared to studies using similar datasets. Therefore,
the benchmarking study by Cuingnet et al. [18] is especially
valuable. It should be pointed that their results show only four
techniques out of 10 scoring accuracies above chance at the
MCI-P versus NP discrimination task. The performance of
our technique thus becomes positively validated.

4.2. Limitations. A substantial limitation of this study and,
so far for all studies based on the ADNI dataset, remains the
lack of histopathological confirmation for AD cases andMCI
progression. Even though the longitudinal followup duration
was substantial, our results do not equate perfectly with
predicting AD, as the clinical assessment is not inherently
100% accurate.The length of followup is also expected to bias
the results as more MCI subjects are expected to progress to
clinically probable AD.

It should also be noted that we used a reference image cre-
ated from the ICBM project. The choice of a reference image
has been shown for other techniques to have a significant
outcome on final results. We have tested this hypothesis early

on (results not shown) using various templates, including
age-related templates and did not uncover appreciable differ-
ences for the discrimination tasks that we explored. However,
this cannot be construed as a general rule, since the choice
of template may influence other discrimination tasks and
should therefore be verified each time.

Finally, albeit the ADNI dataset is large, we must use
machine-learning approaches to optimize training/testing,
and 𝑘-fold validation is one such well-known method.
The unavoidable downside to this approach is that slightly
different information is collected for each fold. Thus, in
a strict statistical sense, it is likely that the results are an
overestimation of the classification rate on generalized data.

Our results indicate that our completely automated tech-
nique is able to extract critical individualized diagnostic
information from standardized MRI acquisitions, obtainable
in a clinical setting.
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